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Sets of States and Extreme Points 

K a r s t e n  K e l l e r  ~ 

Received April 18, 1988 

The natural embedding of orthoposets and quantum logics, equipped with certain 
sets of states, into their corresponding order-unit normed vector space is investi- 
gated. Necessary (resp. sufficient) conditions are stated for the case that the 
image of the embedding and the extreme points of the order interval, bounded 
by 0 and the order unit, coincide. Modifications of the state space are discussed 
from this point of view and the special case of a Boolean algebra is characterized. 

1. I N T R O D U C T I O N  

Let (P, <-, 0, 1) be a partially ordered set with a greatest element 1 and 
a least element 0. A unary  operat ion • P--> P is said to be an or thocomple-  
mentat ion if for  all p, q c P, (01) p•177 = p, (02) sup{p, p• = 1, and (03) p -< q 
implies q• I f  • is an or thocomplementa t ion ,  then (P, < ,  - x, 0 , 1 )  is 
called an orthoposet ,  One says that  p, q ~ P are or thogonal  (p  _1_ q )  i fp  ~ q• 

(P, -<, • 0, 1) is said to be an o r thomodula r  poset  or a quan tum logic 
if  for  all p, q ~ P, (04) p -< q implies sup{p, inf{p • q}}. In this case one calls 
P •  (or thogonal ly  complete) if each set o f  mutual ly  or thogonal  
elements o f  P admits a supremum. 

A state on P is defined to be a monotonica l ly  increasing positive real 
function/.~ on P with (S1)/.~(1) = 1, ($2)/~(sup~=l Pi) =Y.i"--1 t~(P~) if {p~}~'=~ 
is a family o f  mutual ly  or thogonal  elements o f  P, for which s n upi=I p~ exists. 
I f  P is •  and ($3) for each family {p~}~ of  mutual ly  or thogonal  
elements , /~ (sup ;~ ~ p~) = ~ ~ ~/z (p~), t h e n / z  is called completely additive. 

N o w  assume that P is an or thoposet  and A is a convex set o f  states 
on P. Let V(A) be the linear span of  A taken in the set o f  all real functions 
on the or thoposet  P and K(A)  be the cone generated by A. I f  [['llz is the 
Minkowski  functional  corresponding to the absolute convex hull o f  A, the 
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space (V(A), K(A), [[.[[~) becomes a base-normed ordered vector space 
with the base A. Let (V*(A), [[.[[) be the norm dual of (V(A), Jl'[[~). By 
p -*p~ with p~(~p) = r  for all r c V(A) there is given a natural embedding 
of P into V*(h). Its image is denoted by P~. If  V*(A) + is the dual cone of 
K(A), then (V*(A), V*(A) +, [[.[[) is an order-unit Banach space with the 
order unit 1~. 

It is easy to see that Pa is contained in the order interval [0, 1~]. The 
present paper deals with the following main question: In which cases does 
the set Ext[0, 1~] of the extreme points of  [0, 1~] and P~ coincide? This 
paper continues Keller (submitted). Also see the very interesting results of 
Cook (1978, 1988) and Riittimann (1977, 1985; Cook and R/ittiman, 1985). 

2. THE e - H A H N - J O R D A N  PROPERTY AND STRONG SETS 
OF STATES 

In this section let P be an orthoposet and A a convex set of states. 

Definition I. The set A fulfills the e -Hahn-Jordan  property if, for each 
~ V(A) and each e > 0, there exist positive real numbers AI, h2, elements 

/..61, ].62 E A, and a p E P such that ~p = A1/~1 -A2/3,2 and h l/.~2(p• Aep, E(p) < e. 
The e -Hahn-Jordan  property was defined and investigated by Cook 

(1978). The following lemma is an immediate consequence of his results 
and the Krein-Milman theorem: 

Lemma 1. (i) A fulfills the e -Hahn-Jordan  property iff[0, la] is equal 
to the tr(V*(A), V(A))-closure cl~(v.(~), v(a)) (conv Pa) of the convex hull 
of P~. (ii) If  A fulfills the e -Hahn-Jordan  property, then Ext[0, 1~]_ 
cl~(v.(A),v(~)~ (P~). 

Recall that A is said to be strong if, for all p, q ~ P, {tz ~ hi/~(p) = 0} ~_ 
{ / ~ A J ~ ( q ) = 0 }  implies p<--q. 

Theorem I. If  P is an orthoposet and A a strong convex set of  states 
on P such that P~= Ext[0, 1A], then (i) P is a • orthom0dular 
poset; (ii)fulfills the e -Hahn-Jordan  property; and (iii) each tz c A is a 
completely additive state. 

Proof. The statements (i) and (iii) are verified in Keller (submitted). 
Statement (ii) follows from Lemma 1(i) and the Krein-Milman theorem. 
We want to give a sufficient condition that P~= Ext[0, 1~]. For this, by 
o-(P, A) let us denote the weakest topology on P which makes each element 
of  A continuous. �9 

Proposition 1. Let P be an orthoposet and A a strong convex set of 
states with the e -Hahn-Jordan  property such that P is tr(P, A)-compact. 

Then P~ = Ext[0, 1~]. 
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Proof. Since P is tr(P, A)-compact, we obtain (V*(A), V(A))-compact- 
ness of Pa. Hence, by Lemma l(i), 

For p E P let 

Ext[O, 1~] ~ P~ (*) 

Fp = {f~  [0, la]l(vtz ~ A)(g(p) = 0-~ f( /x)  = 0)} 

n { f ~  [0,  l ]l(v  ~ 1 ~ f ( t z )  = 1) 

Since F e is a compact face of[0,  la], by (*) there exists a q ~ P with qaE F r. 
Let us show that p = q, then, by the strongness of A, there is a / z  ~ A 

with / z ( p ) = l  and / z ( q ) < l .  Otherwise, if p~-q, we have a Iz~A with 
/~ (p) = 0 and/~ ( q ) >  0. In both cases qa ~ Fp, which yields a contradiction. 
H e n c e p = q .  �9 

Note that the conditions (i) and (iii) in the formulation of Theorem 1 
are consequences of o-(P,A)-compactness of P in general if P is 
orthomodular. But the difference between the necessary (resp. sufficient) 
conditions for Ext[0, la] = Pa given in Theorem 1 (resp. Proposition 1) if 
A is strong is unclear. 

In conclusion, using Lemma 1 and methods of Riittimann (1977) one 
obtains the following result. 

Proposition 2. Let P be a finite orthoposet. Then Pa---Ext[0, la] if A 
is ultrafull (Riittimann, 1977) and has the e-Hahn-Jordan property. 

Note that the contrary implication is not valid in general. But, if P is 
a finite orthoposet and A is [1. Ha-closed, then the e-Hahn-Jordan property 
implies the Hahn-Jordan property. Under this condition, Pa = Ext[0, 1]a 
iff A is ultrafull, which is essentially the main statement of RiJttimann (1977). 

3. MODIFICATIONS OF THE STATE SET 

Now let us consider our main question from another point of view: 
What happens if the state set is changed in some sense? 

If A1 and A2 are convex sets of states on an orthoposet P with A~ c A2, 
then the restriction of each element of V*(A2) to V(A1) is an element of 
V*(A1). Let us denote the corresponding restriction map by R(A1, A2). It 
holds that R(A1, A2)(Pa:) = Pal- Recall that a state set A is said to be o--convex 
if[, for each countable set {/x~}~=~ ~ A and each set of  positive real numbers 

c o  c o  

{h~}~=~ with Z~=~ hi = 1, we have ~=~ hi/~i ~ A. By 7~ we denote the it-convex 
hull of a state set A, which is obviously a convex set of  states. 

Proposition 3. Let A be a convex set of states on an orthoposet P. Then 
(i) V(A) is [[. Ha-complete if A is g-convex; (ii) R(A, A) is an isometric order 
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isomorphism from (V*(A), V*(A) +) onto (V*(A), V*(A)+); (iii) 
(V(~), [l'l[~) is the [[.[[a-completion of V(A); and ( i~  the restriction of 
R(A,~)  to [0,1a] is an affine er(V*(A),V(A)-(V*(A),V(A))- 
homeomorphism onto [0, 1~]. 

Proof. (i) Let A be o'-convex and (q~i)i~0 a Cauchy sequence in V(A). 
One may assume that ~oi - q~i_t e 1/2' aco A, otherwise one chooses a sub- 
sequence with this property. Fix rt~ ~), ~7~2)~K(~) ( i=  1 , 2 , . . . , 0 o )  with 
11,7~'~11~, 11,7~)11~ -< 1/2i and q~,-r = 1~ 2 ) -  7712). Since A is o--convex, it is 

o~ 
easy to see that ~ = l  _(1) v ~  ~12)~ K(A) and hence ~/i , G i = I  

lim~o,=~Oo+ ~ .71 ' ) -  ~ r/12)eK(A) 
i ~ c r  i = 1  i = 1  

(ii) The norm dual ( V*(A))* of V*(2x) is a base-normed ordered Banach 
space, in which the base can be given by 

B = {~ ~ ( v * ( a ) ) * l ~ ( l ~ )  = 1, ~ positive on V*(A)+}. 

For each ~ocB, by ~ ( p ) = r  there is given a state ~,o on P. Let 
Aa ={/.~[~o e B}. It is not difficult to show that Ac_ Aa. This and the fact 
that each element of V(A) can be interpreted as a bounded linear functional 
on (V*(A)) gives an extension of  each element of  V*(A) to an element of  
V*(A). Since K(A) is I1" []~-dense in K(A), the above extension is uniquely 
determinated and keeps positivity. Therefore R(A, A) becomes an order 
isomorphism and maps [ - l a ,  1~] onto [ - l a ,  la]. The last argument com- 
pletes the proof  of (ii). 

(iii) Obviously, V(A) is I1 II ~-dense in V(A). By (i), V(/X) is complete. 
It remains to show that the restriction of II'll  to v(a)  and II'll  coincide. 
Indeed, for each q~ c V(A). 

II~H~ = sup If(~)l = sup R(A, 7~)T(~0)= sup g(~)=l l~l l~  

(iv) R(A, A) is off V*(z~), V ( ~ ) ) -  (V*(A), V(A))-continuous and, by 
the (r(V*(A), V(A))-compactness of [0, lz~], its restriction to [0, 1~] is a 
closed mapping, which implies (iv). �9 

Corollary 1. Let A 1 and A2 be convex sets of  states on an orthoposet 
P and A~=A2. Then (i) Pa ,=ext [0 ,  la] ifI Pa2=Ext[0,  la2]; and (ii) A1 
fulfills the e-Hahn-Jordan property iff A 2 fulfills the e-Hahn-Jordan 
property. �9 

The following proposition will be important for our further investiga- 
tions. 
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Proposition 4. Let P be an orthoposet and let A~, A 2 be convex sets of 
states with A~_ A 2. If  A2 fulfills the e-Hahn-Jordan property and R = 
R(A~,A2), then (i) R is a II.ll~-II.ll~rcontinuous homomorphism onto 
V*(A1); (ii) R is tr(V*(A2) , V(A2) ) - (V*(A0, V(A0)-continuous; and (iii) 
R(V*(Az)+ ) = V*(A0 + and R([0, 1 j )  = [0, la,]. 

Proof It is not difficult to see that R is a 11"ll~2-11"ll~,-continuous 
homomorphism and (ii) is valid. Let us verify (iii) and the surjectivity of 
R. Let K = cl~tv.r vca~)) (cony Pa:). Then K m_ [0, 1 j ;  hence K is com- 
pact, and by (ii), R(K) becomes o-(V*(A0, V(A0)-compact. Since p~c_ 
R(K), by Lemma l(i) one obtains [0, 1~,] c_ R(K)c_ R([0, 1~:)] c__ [0, 1 j .  
This yields (iii) and that R is surjective. [] 

Now let A be a strong convex set of  completely additive states on a 
complete orthomodular lattice P. I will explain what is meant by "A is 
expectational" under the above restrictions for P and A. The concept of 
an expectational state set can be given, starting from a general orthoposet 
and a general convex set of states, but if A is strong, this generality is not 
essential. For more details see Keller (submitted) and Riittimann (1985). 
A bounded Varadarajan observable on P is a mapping o from the Borel 
sets B(R) on the real line R into P satisfying the following axioms: 

A o~ 1. If { i}i=~ is a family of mutually disjoint sets of B(•), then 
o(A,) _L o(Aj) for i # j  and sup,~l o(Ai)= O(~..Ji~A~). 

2. There exists a bounded A e B(R) with o(A) = 1. 
By/z  ~ S id dtzo for /x  ~ A there is given a bounded affine function on 

A which has a uniquely defined extension to an element E(o) of V*(A). 
A is said to be expectational if V*(A)={E(o)[o is a bounded 

Varadarajan observable}. 

Theorem 2. Let P be a complete orthomodular lattice, A 2 an expecta- 
tional, strong convex state set, and A~ a unital (Cook, 1978) convex set of 
states fulfilling the e-Hahn-Jordan property. If A 1~ A2, then R(A2, A2) is 
an isometric order isomorphism and (V(A1), I1"110 = (v(~=), I1" IIs2) 

Proof By Proposition 4(i), R = R(A1, A2) is a homomorphism from 
V*(A2) onto V*(A1). If o is a Varadarajon observable with E(o) ~ 0, then 
o(]0, oo[) ~ 0 or o(]-oo,  0D # 0. One may assume the first statement. Since 
A~ is unital, there exists a /x  ~ A 1 with/xo(]0, oo[) = 1. Using this fact, one 
easily shows E(o)(iz)# 0, hence R(E(o))(tz)30. This and Proposition 
4(iii) imply that R is an isometric order isomorphism and, by Proposition 
3(ii), that R(~ , ,  A2) is an isometric order isomorphism, too. Therefore, by 
Proposition 3(i), V(A1) is a closed subspace of the Banach space (V(A2), 
H'II~)- Since each element of V*(A1) has only one extension to an element 
of I1"11 =). �9 
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For a convex set A of  states on an orthoposet P let ~ = {~p c V(A)[~p is 
a state}. 

Lemma 2. I fA fulfills the e-Hahn-Jordan property, then (i) Clll.lla(A) = 
and (ii) II'lla---II'l[~ and V*(A) += V*(~) +. 

Proof (i) Let (V*(A))* be the norm dual of  V*(A) and K--~) be the 
set of all positive elements in (V*(A))*. One may assume V(A) to be a 
subspace of  ( V*(A))* in the usual fashion; It is easy to see that K(-~) n V(A) 
is ]l'[]a-closed and contains K(A); moreover, 

K (A) n (A) = cl II. L (K  (A)) (*) 

Obviously, each ~ ~ Clll.lla(A) is a state on P, hence it is contained in ] .  
In the other direction, if ~0 ~ ~, then by Lemma 1 (i), r can be considered 

as an element of K(A); hence, by (*), ~p c Cllt.ll~(K(A)). Let (q~i)i~l be a 
sequence in K--~)\{0} with l i m i ~  ~oi = ~p. Then lim~_~oo ~,/ll~,[la = ~/ll~[la, 
which shows ~\ll~l[acclH~(a); hence ~(1)/11~11~= 1. Since ~p is a state, 
tp(1) = 1. Therefore, ~o = ~/11~11~ clll II~(A). 

(ii) Now z~ _ Ba, where Ba is the closed unit ball in (V(A), I1" Ila). This 
implies aco A~  aco ~ Ba, and hence Ii'lla = II'llm- Then V*(A) + = V*(~) + 
is obvious. �9 

Corollary 2. Let P be the projection lattice of a W*-algebra without 
any direct summand of type /2. Then the set of all completely additive 
states is the only strong, II'[[a-closed, and or-convex state set A on P with 
Pa = Ext[0, 1A]. 

Proof. Let A2 be the set of all completely additive states on P and A1 
a strong, [[. [[ a2-closed, and g-convex state set with Pal = [0, lal]. Then, by 
Theorem 1, AI~A2 and A1 has the e-Hahn-Jordan property. A2 is 
[[.[[a2-closed, o--convex, and expectational by the Gleason-Christensen- 
Yeadon theorem (Yeadon, 1984). Using Theorem 2, one obtains (V(A1), 
ll'll ,) = (V(A=) ,  II'lla=). By Lemma 2 it follows that m I =A 2. �9 

Finally, we want to characterize Boolean algebras under the view of  
representability by extreme point posets in the above manner. Recall that 
Boolean algebras can be considered as distributive (orthomodular) ortholat- 
tices. Dixmier has introduced the concept of a hyperstonean compact 
topological T2 space. A Boolean algebra is said to be hyperstonean if its 
Stonean representation space is a hyperstonean compact topological T2 
space. With regard to a paper of Flachsmeyer (1979), let us give a characteri- 
zation of  hyperstonean Boolean algebras: 

A complete Boolean algebra is hyperstonean iff it admits a unital 
(convex) set of  completely additive states. 
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Definition 2. Let H be a complex Hilbert space and (Hilb(H),  v,  
^,  J-, {0}, H)  the complete orthomodular lattice of the closed linear sub- 
spaces of H, where ~- is the usual orthocomplementation. Let us call a 
%closed regular sublattice of Hi lb(H)  an H-lattice. Here a sublattice L' of 
a given complete lattice L is called regular if L' contains the supremum of 
each subset of L'. 

It is clear that each H-lattice is a complete orthomodular lattice itself. 

Proposition 5. A Boolean algebra is hyperstonean if[ there exists a 
complex Hilbert space H such that P is isomorphic to a Boolean H-lattice. 

Proof. Obviously, since Hilb(H) admits a strong convex set of com- 
pletely additive states, each Boolean H-lattice becomes a hyperstonean 
Boolean algebra. 

If P is a hyperstonean Boolean algebra, then it can be considered as 
the projection lattice of a commutative W*-algebra A (Takesaki, 1979). 
Let (Tr, H)  be a normal representation of A and B(H) the algebra of 
bounded linear operators on H. Then 7r(A) is a yon Neumann algebra. We 
identify Hi lb(H)  with the orthomodular lattice P ( B ( H ) )  of the orthogonal 
projections in B(H). Since ~rlp is a • isomorphism from P into 
P(B(H)),  it remains to show that ~-(P) is a regular sublattice of P(B(H)).  

If {Pi}i~1 is a family of mutually orthogonal elements of P, then by 
Theorem 2.8.4 of Pedersen (1979) 

V ~(p,) ~ ~(P) (*) 
i ~ l  

By transfinite induction and a lemma of Iwamura (1944) on directed nets, 
one obtains Vi~1 ~'(p~)~ ~r(P) for each upward-directed net (P~)~I in P. 
Hence we only have to verify that ~'(p) ^ ~r(q) ~ 7r(P) for all p, q ~ P. Indeed, 
for p, q~P, 

p v q = (p ^ q~) v (p A q) V ( p ' A  q) (**) 

and p ^ q• p ^ q, and p"  ^ q are mutually orthogonal. Hence, by (*) there 
exists an r~  P with ~( r )  -- 7r(p A q ' )  V ~r(p A q) V rr(p" ^ q). Assume that 
rr(r) < ir(p v q). Then r < p v q and there exists an s ~ P\{0} with s --- p v q 
and s• i.e., r<-s ". This implies p^q_L, P^q,  p_L^q<__S• ' hence p ^ q l ,  
p ^ q, p-~ ̂  q• which contradicts (**). 

Therefore 

~r(r) = ~r(p v q) -> ~r(p) v ~'(q) -> "n-(p A q• 7r(p ^ q), 7r(p • ^ q), 

and we obtain ~r(p) v zr(q) = 7r(r) ~ ~r(P). �9 

Now we give a characterization of Boolean algebras with regard to our 
main question. 
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Proposition 6. Let P be an or thoposet  and A a strong convex set o f  
states on P with Pa = Ext[0, la].  

Then  P is a Boolean algebra iff (V*(A), V*(A) § is a lattice. 

Proof. I f  P is a Boolean algebra, then, by  Theorem 1, it becomes  
hypers tonean.  Hence P can be considered to be the project ion lattice o f  a 
commutat ive  W*-a lgebra  A. By Corol lary  1, Pz~ = Ext[0, 1~] and then, by  
Lemma 2, 

Pc,x(~) = Ext[O, lclx(70] 

Furthermore,  by Lemma 2, A* =c l~  (A) is a [[.H~.-closed, strong, and o'- 
convex set o f  states on P. This and Corol lary  2 imply that A* is the set o f  
all completely  additive s ta tes--say,  normal  m e a s u r e s - - o n  P. Applying well- 
known facts o f  funct ional  analysis,  we obtain (V*(A*), V*(A*) +) is a lattice, 
and by Proposi t ion 3(ii) and Lemma 2(ii), (V*(A), V*(A)+), too. 

Let us verify the other  implication. (Ext[0, 1~], -<, 1, 0, 1~) with x • = la - x 
(x ~ Ext[0, la])  is an or thoposet ,  which becomes  a Boolean algebra if V*(A) 
is a lattice (Keller, to appear) .  It is easy to show that p-->pA is an X-order 
i somorphism from P onto  Ext[0, la] ,  which completes  the proof.  

In conclusion,  see C o o k  (1988) on  the natural  embedding  p - ~ p a  if 
V(A) is a lattice. �9 
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